Two-Phase Stefan Problem as the Limit Case of Two-Phase Stefan Problem with Kinetic Condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Two-Phase Stefan Problem

In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.

متن کامل

nonlinear two-phase stefan problem

in this paper we consider a nonlinear two-phase stefan problem in one-dimensional space. the problem is mapped into a nonlinear volterra integral equation for the free boundary.

متن کامل

Classical two - phase Stefan problem for spheres

The classical Stefan problem for freezing (or melting) a sphere is usually treated by assuming that the sphere is initially at the fusion temperature, so that heat flows in one phase only. Even in this idealized case there is no (known) exact solution, and the only way to obtain meaningful results is through numerical or approximate means. In this study, the full two-phase problem is considered...

متن کامل

Newton-Product integration for a Two-phase Stefan problem with Kinetics

We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.

متن کامل

A Nonlinear Two - Phase Stefan Problem with Melting

We consider a one-dimensional two-phase Stefan problem, modeling a layer of solid material oating on liquid. The model includes internal heat sources, variable total mass (resulting e.g. from sedimentation or erosion), and a pressure-dependent melting point. The problem is reduced to a set of nonlinear integral equations, which provides the basis for an existence and uniqueness proof and a new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2002

ISSN: 0022-0396

DOI: 10.1006/jdeq.2001.4120